National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Role of bacteria and mucosal immune system and their interaction in the pathogenesis of inflammatory bowel disease
Du, Zhengyu ; Hudcovic, Tomáš (advisor) ; Prokešová, Ludmila (referee) ; Kamanová, Jana (referee)
Although the etiology and pathogenesis of inflammatory bowel disease (IBD) is not fully understood, it is generally accepted that the inflammation results from aberrant immune responses to antigens of gut microbiota in genetically susceptible individuals (Sartor et al., 2006). Alteration in intestinal microbiota has been found in IBD patients with increased abundance of certain bacteria and decreased abundance of others. Due to the complexity of the disease, multifaceted interactions between genetic factors, host immune response, gut microbiota and environment factors need to be taken into account. In this thesis, the pathogenesis of IBD was first reviewed in respect with the four factors mentioned above. Then we concentrated on the interaction between IBD-associated bacteria and mucosal immune system. We investigated the ability of mucosal-associated bacteria (MAB) from IBD patients to induce spontaneous colitis in germ-free (GF) mice and the impact of those bacteria on the development of dextran sulfate sodium (DSS)-colitis. Together with the analysis of the composition of gut microbiota of MAB colonized mice, we demonstrated the potential deleterious microbes were able to increase the susceptibility to DSS-colitis once they found a suitable niche. We revealed the mechanism of an E.coli strain...
Invasion of the host cell by the parasitic protist Plasmodium falciparum.
Charvátová, Klára ; Doležal, Pavel (advisor) ; Tůmová, Pavla (referee)
Plasmodium falciparum is an intracellular parasite that causes tropical malaria. Although plasmodium is not a problem in the middle latitudes, in tropical and subtropical regions it poses a great health threat. This specifically concerns little children, which constitute more than a half of the victims. This thesis discusses the invasion of the red blood cell by a merozoite, which is a key step of the parasite life cycle responsible for the disease development. The main part of the thesis deals with proteins secreted by organelles of the invasive apparatus of plasmodium cell. It is preceded by a chapter introducing basic information on P. falciparum and malaria. The end of the thesis contains a chapter on the parasite exit from the red blood cell. Key words Invasion, plasmodium, parasite, merozoite, red blood cell, tight junction, gliding motility, apical complex, micronemes, rhoptries
Role of bacteria and mucosal immune system and their interaction in the pathogenesis of inflammatory bowel disease
Du, Zhengyu ; Hudcovic, Tomáš (advisor) ; Prokešová, Ludmila (referee) ; Kamanová, Jana (referee)
Although the etiology and pathogenesis of inflammatory bowel disease (IBD) is not fully understood, it is generally accepted that the inflammation results from aberrant immune responses to antigens of gut microbiota in genetically susceptible individuals (Sartor et al., 2006). Alteration in intestinal microbiota has been found in IBD patients with increased abundance of certain bacteria and decreased abundance of others. Due to the complexity of the disease, multifaceted interactions between genetic factors, host immune response, gut microbiota and environment factors need to be taken into account. In this thesis, the pathogenesis of IBD was first reviewed in respect with the four factors mentioned above. Then we concentrated on the interaction between IBD-associated bacteria and mucosal immune system. We investigated the ability of mucosal-associated bacteria (MAB) from IBD patients to induce spontaneous colitis in germ-free (GF) mice and the impact of those bacteria on the development of dextran sulfate sodium (DSS)-colitis. Together with the analysis of the composition of gut microbiota of MAB colonized mice, we demonstrated the potential deleterious microbes were able to increase the susceptibility to DSS-colitis once they found a suitable niche. We revealed the mechanism of an E.coli strain...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.